On non σ -shortness of Axiom A posets with frame systems

TAKAHASHI, Makoto KOBE University makoto@kobe-u.ac.jp

Previous Study

In this talk, we assume that Boolean algebras are atomless, posets are nom-atomic and separative.

Definition

 $D \subseteq \mathbf{B}^+$ is σ -short if every strictly descending sequence of length ω in D does not have a nonzero lower bound in \mathbf{B} .

B is said to be σ -short if it has a σ -short dense subset.

B is said to be *strongly* σ -*short* if it has a σ -short \wedge -closed dense subset.

D is \land -*closed* if and only if $x \land y \in D$ for every $x, y \in D$. We note that B itself is not a σ -short set, since B is atomless.

 σ -short posets are defined the same way as for BAs.

Examles of σ -short Boolean algebras

1. For any set X, let $\operatorname{Fr} X$ be the free Boolean algebra over X.

 $D = \{\pm x_1 \cdot \pm x_2 \cdot \ldots \cdot \pm x_n \mid n \in \omega, x_1, x_2, \cdots, x_n \in X\} - \{0\}$

Clearly, *D* is a σ -short \wedge -closed dense subset of Fr*X*. Hence, Fr*X* is strongly σ -short.

Every regularly filtered Ba is also strongly σ -short[TY].

2. Let (B, μ) be a measure algebra.

 $D = \{a \in \mathbf{B} \mid \mu(a) = \frac{1}{n+1} \text{ for some } n \in \omega\}.$

D is a σ -short dense subset of B. Hence (B, μ) is σ -short.

Characterizations of σ -short BAs:

Q1. Is it true that the following are equivalent?

(1) B is σ-short.
(2) There exists a sequence {X_n}_{n∈ω} of subsets of B which satisfies the following conditions:
(a) X_n is a pairwise incomparable subset of B.
(b) If x ∈ X_n, y ∈ X_m and n < m, then y ≱ x.
(c) X = ⋃_{n∈ω} X_n is a dense subset of B.

It holds that $(2) \Rightarrow (1)$.

Theorem.([T]) The following are equivalent.

(1) B is strongly σ -short.

(2) There exists a sequence $\{X_n\}_{n\in\omega}$ of subsets of B which satisfies the following conditions:

(a) X_n is a pairwise incomparable subset of B. (b) If $x \in X_n, y \in X_m$ and n < m, then $y \not\geq x$. (c) $X = \bigcup_{n \in \omega} X_n$ is a dense subset of B (d) $\{y \in X_n | y \ge x\}$ is finite for every $n \in \omega$ and $x \in X_{n+1}$.

Q.2 Is it true that every σ -short BAs are strongly σ -short?

No.

Theorem A(Brendle). Let B_{κ} be the algebra for adding κ many random reals. (1) B_{ω} is not strongly σ -short. (2) Assume that the density of B_{κ} equals to κ . Then B_{κ} is strongly σ -short.

Partial answer to Q.1 for Axiom A posets:

Theorem 1. Let P be σ -short Axiom A poset. If P satisfies the conditions (C1), (C2) and (C3) (to be defined later), then there exists a sequence $\{X_n\}_{n\in\omega}$ of subsets of P which satisfies the the following conditions: (a) X_n is a pairwise incomparable subset of B. (b) If $x \in X_n, y \in X_m$ and n < m, then $y \ngeq x$. (c) $X = \bigcup_{n \in \omega} X_n$ is a dense subset of B.

Actually, many Axiom A posets are not σ -short.

A poset (P, \leq) satisfies Axiom A if there are partial orderings $\leq_n (n \in \omega)$ such that

(A1): If $p \leq_0 q$ then $p \leq q$; (A2): If $p \leq_{n+1} q$, then $p \leq_n q$; (A3): If $\{p_n\}_{n \in \omega}$ is a fusion sequence; i.e., if $p_{n+1} \leq_n p_n$ for every $n \in \omega$, then there is q such that $q \leq_n p_n$ for all $n \in \omega$;

(A4): If $p \in P$ and W is a partition of p, then for every n there is $q \leq_n p$ such that q is compatible with at most countably many $x \in W$. We say that a poset (P, \leq) with partial orderings $\leq_n (n \in \omega)$ is a *fusion poset* if it satisfies (A1), (A2), (A3). We assume that partial orderings $\{\leq_n\}_{n\in\omega}$ are transitive.

Fir st, we consider the following condition (C1) for fusion posets.

(C1): $\forall n \in \omega \forall p \in \mathbf{P} \exists p^* \geq_n p \forall p' \geq_n p[p^* \geq_n p']$

For $n \in \omega$ and $p \in \mathbf{P}$, we denote *p in (C1) by $stem_n(p)$.

If a fusion poset P satisfies (C1), then the relation \sim_n on P defined by $p \sim_n q \Leftrightarrow^{\text{def}} stem_n(p) = stem_n(q)$ is an equivalence relation on P.

Using this equivalence relation, we consider conditions (C2) and (C3) as follows.

 $\begin{array}{ll} \textbf{(C2):} & \forall n \in \omega[|\mathbf{P}/\sim_n| \leq \omega] \\ \textbf{(C3):} & \forall n \in \omega \forall p, q \in \mathbf{P}[p \sim_n q \And p \geq q \Rightarrow p \geq_n q] \end{array}$

Examples

In the following examples, we consider a canonical enumeration of $2^{<\omega}$ or $\omega^{<\omega}$. And, when we enumerate elements of a subset of those sets, we use this canonical enumeration.

If t appears in an enumeration after s, then we denote it by $s \prec t$.

Let $\omega^{\langle \omega \rangle} = \{t \in \omega^{\langle \omega} \mid t \text{ is increasing}\}.$

Sacks forcing: (P_S, \leq) is defined as follows.

 $\mathbf{P}_S = \{p \mid p \text{ is a perfect tree of } 2^{<\omega}\} \text{ and } p \ge q \text{ iff } p \supseteq q.$

 $p \ge_n q \Leftrightarrow p \ge q$ and $B_n(p) = B_n(q)$ where $B_n(p)$ is a set of the (n + 1)-st branching points of p.

For $p \in P_S$ and $n \in \omega$, put $stem_n(p) = \{t \in 2^{<\omega}\} \mid \exists s \in B_n(p) [t \subseteq s \text{ or } s \subseteq t]\}.$

 P_S satisfies (C1). It holds that $p \sim_n q$ iff $B_n(p) = B_n(q)$. So P_S satisfies (C2) and (C3).

Laver forcing: (P_L, \leq) is defined as follows.

 $\mathbf{P}_L = \{p \mid p \text{ is a tree of } \omega^{<\omega} \text{ which has a stem } s \text{ such that}$ $\forall t \supseteq s[S(t) = \{k \in \omega \mid t \cap k \in p\} \text{ is infinite}]\} \text{ and } p \ge q \Leftrightarrow p \supseteq q.$

For $p \in P_L$, let $s_0^p = \operatorname{stem}(p), s_1^p, \dots, s_m^p, \dots$ be an enumeration of $\{t \in p \mid t \supseteq \operatorname{stem}(p)\}$.

 $p \ge_n q$ iff $p \ge q$ and $s_i^p = s_i^q$ for all $i = 0, \ldots, n + 1$.

For $p \in \mathbf{P}_L$ and $n \in \omega$,

 $stem_n(p) = \{t \in p \mid t \subseteq s_0^p\} \cup \{s_1^p, \dots, s_{n+1}^p\} \cup \{t \in \omega^{<\omega} \mid s_{n+1}^p \prec t\}.$

 P_L satisfies (C1).

It holds that $p \sim_n q$ iff $s_i^p = s_i^q$ for all $i = 0, \ldots, n+1$.

So P_L satisfies (C2) and (C3).

Theorem 2. Suppose that Axiom A poset P satisfies conditions (C1),(C2) and (C3). If P satisfies the following condition (C4), then P is not σ -short.

(C4):If $p \in P$ and X is a pairwise incomparable subset of P, then for every n there is $q \leq_n p$ such that $r \nleq q$ for all $r \in X$. **Proof.** Suppose that P is σ -short.

Then, there exists a family $\{X_n\}$ which satisfy the conditions as in Theorem 1.

We define a fusion sequence $\{p_n\}_{n\in\omega}$ inductively as follows.

Put $p_0 = p$. Suppose that p_n is already defined. There exists $q \leq_n p_n$ such that $r \nleq q$ forall $r \in X_n$ by (C4). Let p_{n+1} be such an element q. Then $\{p_n\}_{n \in \omega}$ is a fusion sequence, so that there exists a fusion p_ω of $\{p_n\}_{n \in \omega}$. Since $\bigcup_{n \in \omega} X_n$ is a dense subset of P, there exists $n \in \omega$ and $r \in X_n$ such that $r \leq p_\omega$.

On the other hand, since $p_{\omega} \leq p_{n+1}$, we have $r' \nleq p_{\omega}$ for all $r' \in X_n$ by virtue of the definition of p_{n+1} . This contradicts that $r \in X_n$ and $r \leq p_{\omega}$.

(C4) follows from (C2) and the following (C4a).

(C4a): If $p \in P$ and X is a pairwise incomparable subset of P such that $\forall r, r' \in X [r \sim_0 r']$, then for every n there is $q \leq_n p$ such that $r \nleq q$ for all $r \in X$.

We can show that many Axiom A posets satisfy (C4a) using the strong type of amalgamations.

Example: Mathias forcing: (P_M, \leq) is not σ -short. (\mathbf{P}_M, \leq) is defined as follows. $\mathbf{P}_M = \{(s,S) \mid s \in \omega^{<\omega} \uparrow, S \subset_{inf} \omega \setminus \max(s)\},\$ $(s,S) \ge (t,T) \Leftrightarrow t \supseteq s, T \subseteq S$ and range $(t) \setminus range(s) \subseteq S$, $(s,S) \ge_n (t,T)$ iff $(s,S) \ge (t,T), s = t$ and $[S]_{n+1} = [T]_{n+1}$, where $[S]_k$ is a set of the first k elements of S, $p^* = (s, [S]_{n+1} \cup \{k \in \omega \mid k > \max([S]_{n+1})\}),$ $(s,S) \sim_n (t,T)$ iff s = t and $[S]_{n+1} = [T]_{n+1}$. P_M satisfies (C1),(C2) and (C3).

Let p = (s, S), r = (t, T) and $p \ge r$.

We denote $(s, T \cup [S]_{n+1})$ by $p|^n r$ (or simply p|r) and call it *n*-amalgamation of *r* into *p*.

Lemma. Suppose that p = (s, S), r = (t, T) and $p \ge r$. (1) $p \ge_n p |^n r \ge r$, (2) If $p |^n r \ge (t, T')$ and $T \cap [S]_{n+1} = T' \cap [S]_{n+1}$, then $r \ge r'$.

Proof. (1): Since $S \supseteq [S]_{n+1}$ and $S \supseteq T$, we have $S \supseteq T \cup [S]_{n+1}$ and $[T \cup [S]_{n+1}]_{n+1} = [S]_{n+1}$.

(2): Suppose that $p|^{n}r \ge (t, T')$ and $T \cap [S]_{n+1} = T' \cap [S]_{n+1}$.

Since $T \cup [S]_{n+1} \supseteq T'$ and $T \cap [S]_{n+1} = T' \cap [S]_{n+1}$, we have $T \supseteq T'$. Hence $r \ge r'$.

Lemma. Let X be a pairwise incomparable subset of P_M with same stem. Then for every $(s,S) \in P_M$ and $n \in \omega$, there exists $S' \subsetneq S$ such that $[S]_{n+1} = [S']_{n+1}$ and for every $(t,T) \in X$, $(s,S') \ngeq (t,T)$.

Proof. Let $p = (s,S) \in P_M$, $n \in \omega$ and $\mathcal{P}([S]_{n+1}) = \{\tau_1, \ldots, \tau_{2^{n+1}}\}$. If $\forall (t,T) \in X[(s,S) \not\geq (t,T)]$, then take any S' such that $S' \subsetneq S$ and $[S]_{n+1} = [S']_{n+1}$. So we assume that there exists $r = (t,T) \in X$ such that $r \leq p$. We construct a sequence $\{q_k\}_{0 \leq k \leq 2^{n+1}+1}$ inductively such that $q_{k+1} = (s, S_{k+1}) \leq_n q_k = (s, S_k)$ for all k. Put $S_0 = S$. Suppose that we already have q_k .

(1): If there exists $(t,T) \in X$ such that $(t,T) \leq (s,S_k)$ and $T \cap [S]_{n+1} = \tau_k$. We pick such an element r = (t,T)and $T' \subsetneq T$ such that $T' \cap [S]_{n+1} = T' \cap [S]_{n+1}$, and put $q_{k+1} = q_k | (t,T')$.

- (2): Otherwise, put $\overline{q_{k+1}} = q_k$.
- Finally we put $\overline{q} = \overline{q_{2^n+1}} + 1$.
- By virtue of the definition, we have $q \leq_n p$. We shall show that $q \not\geq r$ for all $r \in X$.
- Suppose that $q \ge r = (t,T)$ for some $(t,T) \in X$.
- Put $\tau = T \cap [S]_{n+1}$. Then $\tau = \tau_k$ for some k.
- Thus we have $q_k \ge q \ge r$ and $T \cap [S]_{n+1} = \tau_k$.
- So, by the definition of the sequece $\{q_k\}$, we have
- defined $q_{k+1} = q_k | (t, T')$ where $T' \subsetneq T^*$ such that
- $T' \cap [S]_{n+1} = T^* \cap [S]_{n+1} = \tau_k \text{ and } (t, T^*) \le (s, S_k)$

for some $(t, T^*) \in X$.

Since $q_k|(t,T') \ge q \ge (t,T)$ and $T \cap [S]_{n+1} = T' \cap [S]_{n+1}$, $(t,T') \ge (t,T)$ by above amalgamation lemma. Hence we have $(t,T^*) > (t,T') \ge (t,T)$ and $(t,T), (t,T^*) \in X$. This contradicts that X is a pairwise incomparable subset of P_M . In the same way, we can prove that other posets, eg. Sacks forcing, Laver forcing, etc., satisfy (C4).

How to generalize this proof?

We need a definition of the strong type of amalgamation p|r as above.

To define such amalgamations in general, we introduce frame systems for fusion sets.

Frame Systems

Let $(\mathbf{P}, \leq, \{\leq_n\}_{n \in \omega})$ be a fusion poset and f be a map from $\mathbf{P} \times \omega$ to ω .

 $I_{p,n}^* = \{k \in \omega \mid 0 \le k \le f(stem_n(p), n)\}.$

We say that $\{a_{p,n,k} \in \mathbf{P} \mid n \in \omega, p \in \mathbf{P}, 0 \leq k \leq f(p,n)\}$ is a frame system for **P** if it satisfies the following conditions.

(FS1): $\forall n \in \omega \forall p, q \in \mathbf{P}[p \sim_n q \Rightarrow f(p, n) = f(q, n)]$ (FS2): $\forall n \in \omega \forall p \in \mathbf{P} | \{a_{p,n,k}\}_{0 \le k \le f(p,n)} \text{ is a partition of } p$ and $\{a_{p,n+1,j}\}_{0 \le j \le f(p,n+1)}$ is a refinement of $\{a_{p,n,k}\}_{0 < k < f(p,n)}$ (FS3): $\forall n \in \omega \forall p, q \in \mathbf{P} [p \geq_n q]$ $\Rightarrow \forall k \in [0, f(p, n)] | a_{p,n,k} \ge_0 a_{q,n,k} |$ (FS4): $\forall p, r \in \mathbf{P} \left[p \ge r \Rightarrow \exists n \in \omega \exists k \in [0, f(p, n)] \left[a_{p,n,k} \ge_0 r \right] \right]$ (FS5): $\forall n \in \omega \forall p, r \in \mathbf{P} [p \ge r \Rightarrow \exists q \le_n p [q \ge r \land \forall r' \in \mathbf{P} [q \ge r' \land r \sim_0 r' \land r \sim_{p,n+1} r' \Rightarrow r \ge r']]$ (FS6): $\forall n \in \omega \forall p, r \in P [p \ge r \Rightarrow \exists r' \in P [r > r' \land r \sim_{p,n+1} r']]$ (FS7): $\forall n \in \omega \forall p, r \in P [a_{p,n,k} \ge_0 r \Rightarrow a_{p,n,k} \sim_{p,n+1} r]$

where

$$r \sim_{p,n+1} r'$$

$$\Leftrightarrow \forall k \in I_{p,n+1}^* \left[r \uparrow a_{stem_n(p),n+1,k} \Leftrightarrow r' \uparrow a_{stem_n(p),n+1,k} \right]$$

Let $n \in \omega, p, r \in \mathbf{P}$ and $p \ge r$. Then by (FS5), we can find $q \le_n p$ such that $q \ge r \land \forall r' \in \mathbf{P}[q \ge r' \land r \sim_0 r' \land r \sim_{p,n+1} r' \Rightarrow$ $r \ge r']$. We denote such an element q by $p|^n r$ (or simply p|r) and call it the *n*-amalgamation of *r* into *p*.

Examples:

Sacks forcing: Let $f(p, n) = 2^n - 1$ and $B_n(p) = \{s_0, \dots, s_{2^n-1}\}$ (where $s_0 \prec s_1 \dots \prec s_{2^n-1}$).

Put $a_{p,n,k} = p \upharpoonright s_k = \{t \in p \mid t \subseteq s_k \text{ or } s_k \subseteq t\}.$

Then $\{a_{p,n,k} \in \mathbf{P}_S \mid n \in \omega, p \in \mathbf{P}_S, 0 \le k \le f(p,n)\}$ is a frame system for \mathbf{P}_S .

Mathias forcing:

 $(s, S) \ge_{n} (t, T) \text{ iff } (s, S) \ge (t, T), s = t \text{ and } [S]_{n+1} = [T]_{n+1}.$ Let $f(p, n) = 2^{n} - 1$, $m = \max([S]_{n+1})$ and $K_{n} = \{\tau \in \omega^{<\omega} \uparrow | \operatorname{range}(\tau) \subseteq [S]_{n}\} = \{\tau_{0}, \dots, \tau_{2^{n}-1}\}$ (where $\tau_{0} \prec \tau_{1} \dots \prec \tau_{2^{n}-1}$).
For p = (s, S), put $a_{p,n,k} = (s \uparrow \tau_{k}, S \setminus [S]_{n})$. $stem_{n}(p) = (s, [S]_{n+1} \cup \{k \in \omega \mid k > m)\})$

$$\{a_{stem_n(p),n+1,j} \mid j \in I_{p,n+1}^*\}$$
$$= \{(s^{\tau_k}, \{k \in \omega \mid k > m)\}) \mid \tau_k \in K_n\} \cup$$
$$\{(s^{\tau_k} \langle m \rangle, \{k \in \omega \mid k > m)\}) \mid \tau_k \in K_n\}$$

Lemma.

(1) If $(s,S) \ge_n q = (s,S')$, then $a_{p,n,k} \ge_0 a_{q,n,k}$. (2) If $p = (s,S) \ge (t,T), (t,T')$, then $(t,T) \sim_{p,n+1} (t,T') \Leftrightarrow T \cap [S]_{n+1} = T' \cap [S]_{n+1}$. (3) If $a_{n,p,k} \ge_0 (t,T)$, then $a_{n,p,k} \sim_{p,n+1} (t,T)$.

So, $\{a_{p,n,k} \in \mathbf{P}_M \mid n \in \omega, p \in \mathbf{P}_M, 0 \le k \le f(p,n)\}$ is a frame system for \mathbf{P}_M .

Laver forcing:

 $p \ge_n q$ iff $p \ge q$ and $s_i^p = s_i^q$ for all $i = 0, \ldots, n+1$. Let f(p,n) = n and $K_n = \mathcal{P}(\{s_0^p, ..., s_n^p\})$. For $p \in P_L$, $a_{p,n,k} = (p \upharpoonright s_k^p) \setminus \{t \in p \mid \exists j > k[s_j^p \subseteq t]\}$. If s_k^p is \subseteq -maximal node among K_n , then $a_{p,n,k} = p \upharpoonright s_k^p$. $stem_n(p) = \{t \in p \mid t \subseteq s_0^p\} \cup \{s_1^p, \dots, s_{n+1}^p\} \cup \{t \in \omega^{<\omega} \mid s_{n+1}^p \prec t\}.$ Let $k = \max\{j \mid s_j^p \subsetneq s_{n+1}^p\}$. Then, if $k \neq j \leq n$, then $a_{stem_n(p),n+1,j} = a_{stem_n(p),n,j}$ $a_{stem_n(p),n+1,k} = a_{stem_n(p),n,k} \setminus \{t \in stem_n(p) \mid s_{n+1}^p \subseteq t\}.$

Lemma.

(1) If $p \ge_n q$, then $a_{p,n,k} \ge_0 a_{q,n,k}$. (2) If $p \ge r, r'$ and $r \sim_0 r'$, then $r \sim_{p,n+1} r' \Leftrightarrow r \cap K_{n+1} = r' \cap K_{n+1}$. (3) If $a_{n,p,k} \ge_0 r$, then $a_{n,p,k} \sim_{p,n+1} (t,T)$. Lemma(Amalgamation Lemma). Let $(P, \leq, \{\leq_n\}_{n\in\omega})$ be a fusion poset with a frame system which satisfies (C1), (C2) and (C3). If $n \in \omega, p, r \in P$ and $r \leq_0 a_{p,n,k}$, then we have $a_{p|r,n,k} = r$.

Proof. Suppose that $n \in \omega, p, r \in \mathbf{P}$ and $r \leq_0 a_{p,n,k}$. Let q = p|r. Then we have

$$(*) \quad \forall r' \in \mathbf{P}[q \ge r' \land r \sim_0 r' \land r \sim_{p,n+1} r' \Rightarrow r \ge r']$$

Since $\{a_{p,n,k}\}_{0 \le k \le f(p,n)}$ is a partiotion of p and $r \le a_{p,n,k}$, r is not compatible with $a_{p,n,j}$ for all $j \ne k$. By virtue of (FS3), we have $a_{p,n,j} \ge a_{q,n,j}$. So r is not compatible with $a_{q,n,j}$ for all $j \ne k$.

Since $q = p | r \ge r$, we have $a_{q,n,k} \ge r$.

We have $a_{p,n,k} \ge_0 a_{q,n,k}$ by (FS3), so that we have $r \sim_0 a_{q,n,k}$. Hence by virtue of (CS3), $a_{q,n,k} \ge_0 r$. Therefore $a_{q,n,k} \sim_{q,n+1} r$ by (FS7). Since $p \ge_n q$, we have $stem_n(p) = stem_n(q)$, so that $a_{q,n,k} \sim_{p,n+1} r$. So we have $r \ge a_{q,n,k}$ by (*). Thus $a_{q,n,k} = a_{p|r,n,k} = r$.

Lemma. Let $(P, \leq, \{\leq_n\}_{n\in\omega})$ be a fusion poset with a frame system which satisfies (C1), (C2) and (C3). Suppose that W is a partition of P and $p \in P$. Then there exists $q \leq_0 p$ such that q is compatible with at most countably many $r \in W$. Proof. It follows from the Amalgamation Lemma by usual arguments.

Theorem. If $(P, \leq, \{\leq_n\}_{n \in \omega})$ is a fusion poset with a frame system which satisfies (C1), (C2) and (C3), then $(P, \leq, \{\leq_n\}_{n \in \omega})$ satisfies (A4). Proof. By usual arguments.

Teorem. If $(P, \leq, \{\leq_n\}_{n \in \omega})$ is a fusion poset with a frame system which satisfies (C1), (C2) and (C3), then

 $(P, \leq, \{\leq_n\}_{n \in \omega})$ satisfies (C4).

Proof. Let $\{a_{p,n,k}\}$ be a frame system for P, X be a pairwise incomparable subset of P such that $\forall r, r' \in X[r \sim_0 r']$ and $p \in P$.

We shall show that there exists $q \leq_n p$ such that $r \nleq q$ for all $r \in X$.

If there exists no $r \in X$ such that $r \leq p$, then we put q = p.

So we assume that there exists $r \in X$ such that $r \leq p$. Let $\ell = f(stem_n(p), n + 1)$ and $\mathcal{P}(I_{p,n+1}^*) = \{t_1, ..., t_{2^{\ell+1}}\}.$ We construct a sequence $\{q_k\}_{0 \leq k \leq 2^{\ell+1}+1}$ inductively such that

$$q_{k+1} \leq_n q_k$$
 for all k. Put $q_0 = p$.

Suppose that we already have q_k . In the following, we denote $\{j \mid r \uparrow a_{stem_n(p),n+1,j}\}$ by C(r).

(1): If there exists $r \in X$ such that $r \leq q_k$ and $C(r) = t_k$. We pick such an element r and take $\tilde{r} < r$ such that $r \sim_{p,n+1} \tilde{r}$ by (FS6). Then put $q_{k+1} = q_k | \tilde{r}$. (2): Othewise, put $q_{k+1} = \overline{q_k}$.

Finally we put $q = q_{2^{\ell+1}+1}$.

By virtue of the definition, we have $q \leq_n p$. So we shall show that $q \geq r$ for all $r \in X$. Suppose that $q \geq r$ for some $r \in X$. Put t = C(r). Then $t = t_k$ for some k. Thus we have $q_k \ge q \ge r$ and $C(r) = t_k$. So, by the definition of the sequece $\{p_k\}$, we have defined $q_{k+1} = q_k | \tilde{r}$ where $\tilde{r} < r^*, \tilde{r} \sim_{p,n+1} r^*$ and $C(r^*) = t_k$ for some $r^* \in X$. Then $C(\tilde{r}) = C(r^*) = t_k = C(r)$. Since $q_k | \tilde{r} = q_{k+1} \ge q \ge r$, $\tilde{r} \ge r$ by (FS5). Hence we have $r^* > \tilde{r} \ge r$ and $r^*, r \in X$. This contradicts that X is a pairwise incomparable subset of Ρ.

Teorem. Suppose that $(P, \leq, \{\leq_n\}_{n\in\omega})$ is a fusion poset with a frame system which satisfies (C1), (C2) and (C3). Then, $(P, \leq, \{\leq_n\}_{n\in\omega})$ is not σ -short. **Finiteness Property**

H. Mildenberger, The club principle and the distributivity number, Journal of Symbolic Logic, Vol. 76 No.1,2011, pp. 34-46

In this paper, Mildenberger defined the finiteness property for Axiom A posets. It is defined as follows. Definition. An Axiom A poset $(P, \leq, \{\leq_n\}_{n \in \omega})$ whose elements are subsets of $2^{<\omega}$ or of $\omega^{<\omega}$ has the finiteness property iff

- **1.** $p \ge q$ implies $p \supseteq q$,
- 2. there is a function $h: \mathbf{P} \times \omega \longrightarrow \omega$ such that for every n, p, q,

 $p \ge_n q$ iff $p \ge q$ and $q \cap h(p,n)^{h(p,n)} = p \cap h(p,n)^{h(p,n)}$.

In the case of $2^{<\omega}$, we can write $2^{h(p,n)}$ instead of $h(p,n)^{h(p,n)}$. We denote $2^{h(p,n)}$ or $h(p,n)^{h(p,n)}$ by H_n^p .

Without loss of generality, we may assume that elements of P are trees. We say that P has the uniform finiteness property if it has the finiteness property and for every $n \in \omega, p, q \in \mathbf{P}$, $p \ge_n q$ implies h(p, n) = h(q, n). For $p \in \mathbf{P}$, $s \in p$ is called the stem of p if (i): for every $t \in p$, $s \subseteq t$ or $t \subseteq s$, and (ii): p is a branching point, i.e., s has at least two successors in p.

We denote the stem of p as st(p). If σ is a finite subtree of p, we denote it by $\sigma \Subset p$. We say that $t \in \sigma$ is a σ -branching point of p if there exists $k \in \omega$ such that $t^{\frown}\langle k \rangle \in p$ and $t^{\frown}\langle k \rangle \notin \sigma$. We denote the set of σ -branching points of p by σ^b .

If
$$\mathbf{P} = P_L$$
, then $\sigma^b = \sigma \setminus \{t \in \sigma \mid t \subsetneq st(p)\}$

Let $p \ge r$ and $t \in \sigma^b$. Then we say that t is a r- σ branching point of p if there exists $s \in r$ such that $t \subsetneq s$ and $\forall k \in \omega \left[t \land \langle k \rangle \subseteq s \Rightarrow t \land \langle k \rangle \notin \sigma \right]$. We donote the set of r- σ -branching points of p by $\sigma^{b,r}$. For $p \ge r, r'$ and $\sigma \Subset p$, we define $r \approx_{\sigma} r'$ if and only if $r \cap \sigma = r' \cap \sigma$ and $\sigma^{b,r} = \sigma^{b,r'}$. We say that P has enough elements if P satisfies the following

- 1. $I=2^{<\omega}$ or $\omega^{<\omega}\in \mathbf{P}$,
- 2. for every $r \in \mathbf{P}$, there exists $r' \in \mathbf{P}$ such that r > r' and st(r) = st(r'),
- 3. for every $p \in \mathbf{P}$,

 $p^* = I \setminus \{t \in I \mid t \notin p, \exists s \in (H_n^p \setminus p) \mid [s \subseteq t \text{ or } t \subseteq s]\} \in \mathbf{P},$

4. for every $p \in \mathbf{P}$ and $s \in p$,

 $p \upharpoonright s = \{t \in p \mid t \subseteq s \text{ or } s \subseteq t\} \in \mathbf{P},$

5. for every $p \in \mathbf{P}$ and $r \leq p$,

 $p|r = r \cup \{t \in p \mid t \nsubseteq st(r) \text{ and } st(r) \nsubseteq t\} \in \mathbf{P}.$

Let
$$\sigma_p^n = \{t \in \omega^{<\omega} \mid \exists s \in p \cap H_n^p \ [t \subseteq s]\}.$$

Lemma. Let $(\mathbf{P}, \leq, \{\leq_n\}_{n \in \omega})$ be an Axiom A poset with uniform finiteness property which has enough elements. Then for every $n \in \omega, p \in \mathbf{P}$ and $p \geq r$, there exists r' < rsuch that $r \approx_{\sigma_p^n} r'$. Theorem. Let $(P, \leq, \{\leq_n\}_{n \in \omega})$ be an Axiom A poset with uniform finiteness property which has enough elements. Then we have

1. P satisfies (C1), (C2) and (C3).

2. If $(P, \leq, \{\leq_n\}_{n \in \omega})$ satisfies the following strong amalgamation property, then P is not σ -short.

(AP): $\forall n \in \omega \forall p \in \mathbf{P} \forall r \in \mathbf{P} [p \geq r \Rightarrow$

 $\exists q \leq_n p \left[q \geq r \land \forall r' \in \mathbf{P}[q \geq r' \land r \approx_{\sigma_p^n} r' \Rightarrow r \geq r' \right]$

In the following, we assume that

(FS8): $\forall p \in \mathbf{P} \forall n \in \omega \forall k \in I_{n.n}^*$ $\exists m \in \omega \exists j \in I_{1,m} \left[a_{stem_n(p),n,k} = a_{1,m,j} \right]$ (FS9): $\forall p, r, r' \in \mathbf{P} \left[p \ge r, r' \Rightarrow \left[\forall n \in \omega [r \sim_{p,n} r'] \Rightarrow r = r' \right] \right]$. (FS10): $\forall p \in \mathbf{P} \exists q \leq p [q \text{ is uniform}],$ where q is uniform if for every $n \in \omega$, $\max\{m \mid \exists k, j \left[a_{stem_n(p),n,k}\right] = a_{1,m,j}$ < min{m | $\exists k, j \left[a_{stem_{n+1}(p), n+1, k} = a_{1, m, j} \right].$

For every $p \in \mathbf{P}$, we define a subtree \widetilde{p} of $\omega^{<\omega}$ by $\widetilde{p} = \{\tau \in \omega^{<\omega} \mid \forall n \in \mathsf{dom}(\tau) [0 \le \tau(n) \le f(1,n), p \uparrow a_{1,n,\tau(n)}] \}.$ Let $\overline{\mathbf{P}} = \{ \widetilde{p} \mid p \in \mathbf{P} \}$. We define a partial order \leq_T on $\widetilde{\mathbf{P}}$ such that $\widetilde{p} \leq_T \widetilde{q}$ if and only if \widetilde{p} is a subtree of \widetilde{q} . We denote $I_{1,n}$ by I_n . For $n \in \omega$ and $j \in I_n$, we define $\tau_i^n \in \omega^{<\omega}$ by dom $(\tau_i^n) = \{0, \ldots, n\}$ and $\tau_i^n(k) = \ell$ if and only if $a_{1,k,\ell} \ge a_{1,n,j}$. Since $\{a_{1,k,\ell}\}_{0 \le \ell \le f(1,k)}$ is a partition of 1 and $\{a_{1,n,j}\}_{0 \le j \le f(1,n)}$ is a refinement of $\{a_{1,k,\ell}\}_{0 \le \ell \le f(1,k)}$ for $k \leq n$, τ_j^n is well-defined. If $a_{stem_n(p),n,k} = a_{1,m,j}$, we denote au_{j}^{m} by $au_{p,n,k}$.

Lemma. \tilde{p} is a subtree of $\omega^{<\omega}$ for every $p \in \mathbf{P}$.

Lemma. For every $\tau \in \tilde{p}$, there are extensions τ_1, τ_2 of τ such that τ_1 and τ_2 are incompatible.

Lemma.

- **1.** If $p \neq q$, then $\tilde{p} \neq \tilde{q}$.
- 2. If $p \leq q$, then \tilde{p} is a subtree of \tilde{q} .
- **3.** If $p \perp q$, then $\tilde{p} \perp \tilde{q}$.

Lemma. If (P, \leq) is a fusion poset with a frame system which satisfies (F8) and (F9), then (P, \leq) is isomorphic to (\widetilde{P}, \leq_T) .

Let $\widetilde{\mathbf{P}}_u = \{ \widetilde{p} \mid p \text{ is uniform} \}$. Then $\widetilde{\mathbf{P}}_u$ is a dense subset of $\widetilde{\mathbf{P}}$ by (F10).

Theorem. If $\forall n \forall p \forall k [|\{j \mid a_{p,n,k} > a_{p,n+1,j}\}| = 2)]$, then $(\widetilde{\mathbf{P}}_u, \leq_T)$ satisfies the finiteness property.

It is open that $(\widetilde{\mathbf{P}}_u, \leq_T)$ satisfies the finiteness property, in general.

Remark. Since $\widetilde{P_L} \cong P_L$, $\widetilde{P_L}$ satisfies the finiteness property as in [2].

Open Problems

- 1. Hechler forcing which adds a strictly increasing function from to is not -short. How about general Hechler forcing?
- 2. Is a forcing product of a σ -closed poset and a CCC poset with the density $\geq \omega_1$ not σ -short?
- **3.** Is Axiom A non-CCC poset not σ -short?

- K. Matsumoto, On non *σ*-shortness of Axiom A posets (in Japanese), Master Thesis, Kobe university, 2011.3
 H. Mildenberger, The club principle and the distributivity number, Journal of Symbolic Logic, Vol. 76 No.1,2011, pp. 34-46
- 3 M. Takahashi , On Strongly *σ*-Short Boolean Algebras ,Proceedings of General Topology Symposium held in Kobe, 2002,pp 74-79
- 4 M. Takahashi, On non σ -short Axiom A posets (in Japanese), Abstracts of MSJ Spring Meeting 2011.
- 5 M. Takahashi and Y. Yoshinobu, *σ*-short Boolean algebras, Mathematical Logic Quarterly,Vol.49 No.6, 2003, pp 543-549