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In this talk, we assume that Boolean algebras are atom-

less, posets are nom-atomic and separative.

Definition

D ⊆ B+ is σ-short if every strictly descending sequence

of length ω in D does not have a nonzero lower bound

in B.

B is said to be σ-short if it has a σ-short dense subset.

B is said to be strongly σ-short if it has a σ-short ∧-closed
dense subset.
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D is ∧-closed if and only if x ∧ y ∈ D for every x, y ∈ D.

We note that B itself is not a σ-short set, since B is

atomless.

σ-short posets are defined the same way as for BAs.
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Examles of σ-short Boolean algebras

1. For any set X, let FrX be the free Boolean algebra

over X.

D = {±x1 · ±x2 · . . . · ±xn
∣∣∣ n ∈ ω, x1, x2, · · · , xn ∈ X} − {0}

Clearly, D is a σ-short ∧-closed dense subset of FrX.

Hence, FrX is strongly σ-short.

Every regularly filtered Ba is also strongly σ-short[TY].

２.　Let (B, µ) be a measure algebra.

D = {a ∈ B
∣∣∣ µ(a) = 1

n+1 for some n ∈ ω}.

D is a σ-short dense subset of B. Hence (B, µ) is σ-short.
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Characterizations of σ-short BAs:

Q1. Is it true that the following are equivalent?

(1) B is σ-short.

(2) There exists a sequence {Xn}n∈ω of subsets of B

which satisfies the following conditions:

(a) Xn is a pairwise incomparable subset of B.

(b) If x ∈ Xn, y ∈ Xm and n < m, then y ≱ x.

(c) X =
∪

n∈ω
Xn is a dense subset of B.

It holds that (2)⇒(1).
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Partial answer for strongly σ-short BAs

Theorem.([T]) The following are equivalent.

(1) B is strongly σ-short.

(2) There exists a sequence {Xn}n∈ω of subsets of B

which satisfies the following conditions:

(a) Xn is a pairwise incomparable subset of B.

(b) If x ∈ Xn, y ∈ Xm and n < m, then y ≱ x.

(c) X =
∪

n∈ω
Xn is a dense subset of B

(d) {y ∈ Xn|y ≥ x} is finite for every n ∈ ω and

x ∈ Xn+1.
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Q.2 Is it true that every σ-short BAs are strongly σ-

short?

No.

Theorem A(Brendle). Let Bκ be the algebra for adding

κ many random reals.

(1) Bω is not strongly σ-short.

(2) Assume that the density of Bκ equals to κ.

Then Bκ is strongly σ-short.
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Partial answer to Q.1 for Axiom A posets:

Theorem 1. Let P be σ-short Axiom A poset. If P sat-

isfies the conditions (C1), (C2) and (C3) (to be defined

later), then there exists a sequence {Xn}n∈ω of subsets

of P which satisfies the the following conditions:

(a) Xn is a pairwise incomparable subset of B.

(b) If x ∈ Xn, y ∈ Xm and n < m, then y ≱ x.

(c) X =
∪

n∈ω
Xn is a dense subset of B.

Actually, many Axiom A posets are not σ-short.
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A poset (P,≤) satisfies Axiom A if there are partial or-

derings ≤n (n ∈ ω) such that

(A1): If p ≤0 q then p ≤ q;

(A2): If p ≤n+1 q, then p ≤n q;

(A3): If {pn}n∈ω is a fusion sequence; i.e., if pn+1 ≤n pn

for every n ∈ ω, then there is q such that q ≤n pn for

all n ∈ ω;

(A4): If p ∈ P and W is a partition of p, then for

every n there is q ≤n p such that q is compatible with

at most countably many x ∈ W .
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We say that a poset (P,≤) with partial orderings ≤n (n ∈

ω) is a fusion poset if it satisfies (A1),(A2),(A3). We

assume that partial orderings {≤n}n∈ω are transitive.

Fir st, we consider the following condition (C1) for fu-

sion posets.

(C1):∀n ∈ ω∀p ∈ P∃p∗ ≥n p∀p′ ≥n p[p∗ ≥n p′]

For n ∈ ω and p ∈ P, we denote ∗p in (C1) by stemn(p).
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If a fusion poset P satisfies (C1), then the relation ∼n on

P defined by p ∼n q
def⇐⇒ stemn(p) = stemn(q) is an equiva-

lence relation on P.

Using this equivalence relation, we consider conditions

(C2) and (C3) as follows.

(C2): ∀n ∈ ω[|P/ ∼n | ≤ ω]

(C3): ∀n ∈ ω∀p, q ∈ P[p ∼n q & p ≥ q ⇒ p ≥n q]
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Examples

In the following examples, we consider a canonical enu-

meration of 2<ω or ω<ω. And, when we enumerate ele-

ments of a subset of those sets, we use this canonical

enumeration.

If t appears in an enumeration after s, then we denote

it by s ≺ t.

Let ω<ω↑= {t ∈ ω<ω | t is increasing}.
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Sacks forcing: (PS,≤) is defined as follows.

PS = {p | p is a perfect tree of 2<ω} and p ≥ q iff p ⊇ q.

p ≥n q ⇔ p ≥ q and Bn(p) = Bn(q) where Bn(p) is a set of

the (n+1)-st branching points of p.

For p ∈ PS and n ∈ ω, put

stemn(p) = {t ∈ 2<ω} | ∃s ∈ Bn(p) [t ⊆ s or s ⊆ t]}.

PS satisfies (C1). It holds that p ∼n q iff Bn(p) = Bn(q).

So PS satisfies (C2) and (C3).
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Laver forcing: (PL,≤) is defined as follows.

PL = {p | p is a tree of ω<ω which has a stem s such that

∀t ⊇ s[S(t) = {k ∈ ω | t⌢k ∈ p} is infinite]} and p ≥ q ⇔ p ⊇

q.

For p ∈ PL, let s
p
0 = stem(p), sp1, . . . , s

p
m, . . . be an enumera-

tion of {t ∈ p | t ⊇ stem(p)}.

p ≥n q iff p ≥ q and s
p
i = s

q
i for all i = 0, . . . , n + 1 .
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For p ∈ PL and n ∈ ω,

stemn(p) = {t ∈ p | t ⊆ s
p
0}∪{sp1, . . . , s

p
n+1}∪{t ∈ ω<ω |spn+1≺ t}.

PL satisfies (C1).

It holds that p ∼n q iff s
p
i = s

q
i for all i = 0, . . . , n+1.

So PL satisfies (C2) and (C3).
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Theorem 2. Suppose that Axiom A poset P satisfies

conditions (C1),(C2) and (C3). If P satisfies the following

condition (C4), then P is not σ-short.

(C4):If p ∈ P and X is a pairwise incomparable subset of

P, then for every n there is q ≤n p such that r ≰ q for all

r ∈ X.
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Proof. Suppose that P is σ-short.

Then, there exists a family {Xn} which satisfy the con-

ditions as in Theorem 1.

We define a fusion sequence {pn}n∈ω inductively as fol-

lows.

Put p0 = p. Suppose that pn is already defined.

There exists q ≤n pn such that r ≰ q forall r ∈ Xn by (C4).

Let pn+1 be such an element q. Then {pn}n∈ω is a fusion

sequence, so that there exists a fusion pω of {pn}n∈ω.
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Since
∪

n∈ω
Xn is a dense subset of P, there exists n ∈ ω

and r ∈ Xn such that r ≤ pω.

On the other hand, since pω ≤ pn+1, we have r′ ≰ pω

for all r′ ∈ Xn by virtue of the definition of pn+1. This

contradicts that r ∈ Xn and r ≤ pω.
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(C4) follows from (C2) and the following (C4a).

(C4a): If p ∈ P and X is a pairwise incomparable subset

of P such that ∀r, r′ ∈ X
[
r ∼0 r′

]
, then for every n there

is q ≤n p such that r ≰ q for all r ∈ X.

We can show that many Axiom A posets satisfy (C4a)

using the strong type of amalgamations.
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Example: Mathias forcing: (PM ,≤) is not σ-short.

(PM ,≤) is defined as follows.

PM = {(s, S) | s ∈ ω<ω↑, S ⊂inf ω\max(s)},

(s, S) ≥ (t, T ) ⇔ t ⊇ s, T ⊆ S and range(t)\range(s) ⊆ S,

(s, S) ≥n (t, T ) iff (s, S) ≥ (t, T ), s = t and [S]n+1 = [T ]n+1 ,

where [S]k is a set of the first k elements of S,

p∗ = (s, [S]n+1 ∪ {k ∈ ω | k > max([S]n+1)}),

(s, S) ∼n (t, T ) iff s = t and [S]n+1 = [T ]n+1.

PM satisfies (C1),(C2) and (C3).
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Let p = (s, S), r = (t, T ) and p ≥ r.

We denote (s, T ∪ [S]n+1) by p|nr(or simply p|r) and call

it n-amalgamation of r into p.

Lemma. Suppose that p = (s, S), r = (t, T ) and p ≥ r.

(1) p ≥n p|nr ≥ r,

(2) If p|nr ≥ (t, T ′) and T ∩ [S]n+1 = T ′ ∩ [S]n+1 , then

r ≥ r′.

Proof. (1): Since S ⊇ [S]n+1 and S ⊇ T , we have S ⊇
T ∪ [S]n+1 and [T ∪ [S]n+1]n+1 = [S]n+1.

(2): Suppose that p|nr ≥ (t, T ′) and T∩[S]n+1 = T ′∩[S]n+1.
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Since T ∪ [S]n+1 ⊇ T ′ and T ∩ [S]n+1 = T ′∩ [S]n+1, we have

T ⊇ T ′. Hence r ≥ r′.

Lemma. Let X be a pairwise incomparable subset of

PM with same stem. Then for every (s, S) ∈ PM and

n ∈ ω, there exists S′ ⊊ S such that [S]n+1 = [S′]n+1 and

for every (t, T ) ∈ X, (s, S′) ≱ (t, T ).



Proof. Let p = (s, S) ∈ PM , n ∈ ω and P([S]n+1) =

{τ1, . . . , τ2n+1}. If ∀(t, T ) ∈ X[(s, S) ≱ (t, T )], then take any

S′ such that S′ ⊊ S and [S]n+1 = [S′]n+1. So we assume

that there exists r = (t, T ) ∈ X such that r ≤ p. We con-

struct a sequence {qk}0≤k≤2n+1+1 inductively such that

qk+1 = (s, Sk+1) ≤n qk = (s, Sk) for all k. Put S0 = S.

Suppose that we already have qk.

(1): If there exists (t, T ) ∈ X such that (t, T ) ≤ (s, Sk)

and T ∩ [S]n+1 = τk. We pick such an element r = (t, T )

and T ′ ⊊ T such that T ′ ∩ [S]n+1 = T ′ ∩ [S]n+1, and put

qk+1 = qk|(t, T ′).
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(2): Otherwise, put qk+1 = qk.

Finally we put q = q2n+1+1.

By virtue of the definition, we have q ≤n p. We shall

show that q ≱ r for all r ∈ X.

Suppose that q ≥ r = (t, T ) for some (t, T ) ∈ X .

Put τ = T ∩ [S]n+1. Then τ = τk for some k.

Thus we have qk ≥ q ≥ r and T ∩ [S]n+1 = τk.

So, by the definition of the sequece {qk}, we have

defined qk+1 = qk|(t, T ′) where T ′ ⊊ T ∗ such that

T ′ ∩ [S]n+1 = T ∗ ∩ [S]n+1 = τk and (t, T ∗) ≤ (s, Sk)



for some (t, T ∗) ∈ X.

Since qk|(t, T ′) ≥ q ≥ (t, T ) and T ∩ [S]n+1 = T ′ ∩ [S]n+1 ,

(t, T ′) ≥ (t, T ) by above amalgamation lemma. Hence we

have (t, T ∗) > (t, T ′) ≥ (t, T ) and (t, T ), (t, T ∗) ∈ X. This

contradicts that X is a pairwise incomparable subset of

PM.
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In the same way, we can prove that other posets, eg.

Sacks forcing, Laver forcing,etc., satisfy (C4).

How to generalize this proof?

We need a definition of the strong type of amalgamation

p|r as above.

To define such amalgamations in general, we introduce

frame systems for fusion sets.
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Frame Systems
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Let (P,≤, {≤n}n∈ω) be a fusion poset and f be a map

from P× ω to ω.

I∗p,n = {k ∈ ω | 0 ≤ k ≤ f(stemn(p), n)}.

We say that {ap,n,k ∈ P | n ∈ ω, p ∈ P,0 ≤ k ≤ f(p, n)} is a

frame system for P if it satisfies the following conditions.
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(FS1): ∀n ∈ ω∀p, q ∈ P[p ∼n q ⇒ f(p, n) = f(q, n)]

(FS2): ∀n ∈ ω∀p ∈ P
[
{ap,n,k}0≤k≤f(p,n)is a partition of p

and {ap,n+1,j}0≤j≤f(p,n+1)is a refinement of

{ap,n,k}0≤k≤f(p,n).
]

(FS3): ∀n ∈ ω∀p, q ∈ P [p ≥n q

⇒ ∀k ∈ [0, f(p, n)]
[
ap,n,k ≥0 aq,n,k

]]

(FS4): ∀p, r ∈ P
[
p ≥ r ⇒ ∃n ∈ ω∃k ∈ [0, f(p, n)]

[
ap,n,k ≥0 r

]]
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(FS5): ∀n ∈ ω∀p, r ∈ P [p ≥ r ⇒ ∃q ≤n p [q ≥ r∧

∀r′ ∈ P[q ≥ r′ ∧ r ∼0 r′ ∧ r ∼p,n+1 r′ ⇒ r ≥ r′
]]

(FS6): ∀n ∈ ω∀p, r ∈ P [p ≥ r

⇒ ∃r′ ∈ P
[
r > r′ ∧ r ∼p,n+1 r′

]]
(FS7): ∀n ∈ ω∀p, r ∈ P

[
ap,n,k ≥0 r ⇒ ap,n,k ∼p,n+1 r

]

where

r ∼p,n+1 r′

⇔ ∀k ∈ I∗p,n+1

[
r ↑ astemn(p),n+1,k ⇔ r′ ↑ astemn(p),n+1,k

]
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Let n ∈ ω, p, r ∈ P and p ≥ r. Then by (FS5), we can find

q ≤n p such that q ≥ r∧∀r′ ∈ P[q ≥ r′∧ r ∼0 r′∧ r ∼p,n+1 r′ ⇒

r ≥ r′]. We denote such an element q by p|nr(or simply

p|r) and calll it the n-amalgamation of r into p.
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Examples:

Sacks forcing: Let f(p, n) = 2n−1 and Bn(p) = {s0, . . . , s2n−1}

(where s0 ≺ s1 · · · ≺ s2n−1).

Put ap,n,k = p↾sk = {t ∈ p | t ⊆ sk or sk ⊆ t}.

Then {ap,n,k ∈ PS | n ∈ ω, p ∈ PS,0 ≤ k ≤ f(p, n)} is a frame

system for PS.
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Mathias forcing:

(s, S) ≥n (t, T ) iff (s, S) ≥ (t, T ), s = t and [S]n+1 = [T ]n+1.

Let f(p, n) = 2n − 1, m = max([S]n+1) and

Kn = {τ ∈ ω<ω↑ | range(τ) ⊆ [S]n} = {τ0, . . . , τ2n−1}

(where τ0 ≺ τ1 · · · ≺ τ2n−1).

For p = (s, S), put ap,n,k = (s⌢τk, S\[S]n).

stemn(p) = (s, [S]n+1 ∪ {k ∈ ω | k > m)})
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{astemn(p),n+1,j | j ∈ I∗p,n+1}

= {(s⌢τk, {k ∈ ω | k > m)}) | τk ∈ Kn}∪

{(s⌢τ⌢k ⟨m⟩, {k ∈ ω | k > m)}) | τk ∈ Kn}

Lemma.

(1) If (s, S) ≥n q = (s, S′), then ap,n,k ≥0 aq,n,k.

(2) If p = (s, S) ≥ (t, T ), (t, T ′), then

(t, T ) ∼p,n+1 (t, T ′) ⇔ T ∩ [S]n+1 = T ′ ∩ [S]n+1.

(3) If an,p,k ≥0 (t, T ), then an,p,k ∼p,n+1 (t, T ).

So, {ap,n,k ∈ PM | n ∈ ω, p ∈ PM ,0 ≤ k ≤ f(p, n)} is a frame

system for PM.
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Laver forcing:

p ≥n q iff p ≥ q and s
p
i = s

q
i for all i = 0, . . . , n+1.

Let f(p, n) = n and Kn = P({sp0, . . . , s
p
n}).

For p ∈ PL, ap,n,k = (p↾spk)\{t ∈ p | ∃j > k[spj ⊆ t]}.

If s
p
k is ⊆-maximal node among Kn, then ap,n,k = p↾spk.

stemn(p) = {t ∈ p | t ⊆ s
p
0}∪{sp1, . . . , s

p
n+1}∪{t ∈ ω<ω |spn+1≺ t}.

Let k = max{j | s
p
j ⊊ s

p
n+1}. Then, if k ̸= j ≤ n, then

astemn(p),n+1,j = astemn(p),n,j.

astemn(p),n+1,k = astemn(p),n,k\{t ∈ stemn(p) | spn+1 ⊆ t}.
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Lemma.

(1) If p ≥n q, then ap,n,k ≥0 aq,n,k.

(2) If p ≥ r, r′ and r ∼0 r′, then

r ∼p,n+1 r′ ⇔ r ∩Kn+1 = r′ ∩Kn+1.

(3) If an,p,k ≥0 r, then an,p,k ∼p,n+1 (t, T ).
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Lemma(Amalgamation Lemma). Let (P,≤, {≤n}n∈ω) be

a fusion poset with a frame system which satisfies (C1),

(C2) and (C3). If n ∈ ω, p, r ∈ P and r ≤0 ap,n,k, then we

have ap|r,n,k = r.

Proof. Suppose that n ∈ ω, p, r ∈ P and r ≤0 ap,n,k. Let

q = p|r. Then we have

(∗) ∀r′ ∈ P[q ≥ r′ ∧ r ∼0 r′ ∧ r ∼p,n+1 r′ ⇒ r ≥ r′]

Since {ap,n,k}0≤k≤f(p,n) is a partiotion of p and r ≤ ap,n,k ,

r is not compatible with ap,n,j for all j ̸= k. By virtue
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of (FS3), we have ap,n,j ≥ aq,n,j. So r is not compatible

with aq,n,j for all j ̸= k.

Since q = p|r ≥ r, we have aq,n,k ≥ r.

We have ap,n,k ≥0 aq,n,k by (FS3) , so that we have r ∼0

aq,n,k. Hence by virtue of (CS3), aq,n,k ≥0 r. Therefore

aq,n,k ∼q,n+1 r by (FS7). Since p ≥n q, we have stemn(p) =

stemn(q), so that aq,n,k ∼p,n+1 r. So we have r ≥ aq,n,k by

(∗). Thus aq,n,k = ap|r,n,k = r.



Lemma. Let (P,≤, {≤n}n∈ω) be a fusion poset with a

frame system which satisfies (C1), (C2) and (C3). Sup-

pose that W is a partition of P and p ∈ P. Then there

exists q ≤0 p such that q is compatible with at most

countably many r ∈ W .
Proof. It follows from the Amalgamation Lemma by

usual arguments.

Theorem. If (P,≤, {≤n}n∈ω) is a fusion poset with a

frame system which satisfies (C1), (C2) and (C3), then

(P,≤, {≤n}n∈ω) satisfies (A4).

Proof. By usual arguments.
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Teorem. If (P,≤, {≤n}n∈ω) is a fusion poset with a frame

system which satisfies (C1), (C2) and (C3), then

(P,≤, {≤n}n∈ω) satisfies (C4).

Proof. Let {ap,n,k} be a frame system for P, X be a pair-

wise incomparable subset of P such that ∀r, r′ ∈ X[r ∼0 r′]

and p ∈ P.

We shall show that there exists q ≤n p such that r ≰ q

for all r ∈ X.

If there exists no r ∈ X such that r ≤ p, then we put

q = p.
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So we assume that there exists r ∈ X such that r ≤ p.

Let ℓ = f(stemn(p), n+1) and P(I∗p,n+1) = {t1, ..., t2ℓ+1}.

We construct a sequence {qk}0≤k≤2ℓ+1+1 inductively such

that

qk+1 ≤n qk for all k. Put q0 = p.

Suppose that we already have qk. In the following, we

denote {j | r ↑ astemn(p),n+1,j} by C(r).

(1): If there exists r ∈ X such that r ≤ qk and C(r) = tk.

We pick such an element r and take r̃ < r such that

r ∼p,n+1 r̃ by (FS6). Then put qk+1 = qk|r̃.



(2): Othewise, put qk+1 = qk.

Finally we put q = q2ℓ+1+1.

By virtue of the definition, we have q ≤n p. So we shall

show that q ≱ r for all r ∈ X. Suppose that q ≥ r for some

r ∈ X . Put t = C(r). Then t = tk for some k. Thus

we have qk ≥ q ≥ r and C(r) = tk. So, by the definition

of the sequece {pk}, we have defined qk+1 = qk|r̃ where

r̃ < r∗, r̃ ∼p,n+1 r∗and C(r∗) = tk for some r∗ ∈ X. Then

C(r̃) = C(r∗) = tk = C(r). Since qk|r̃ = qk+1 ≥ q ≥ r , r̃ ≥ r

by (FS5). Hence we have r∗ > r̃ ≥ r and r∗, r ∈ X. This

contradicts that X is a pairwise incomparable subset of

P.



Teorem. Suppose that (P,≤, {≤n}n∈ω) is a fusion poset

with a frame system which satisfies (C1), (C2) and

(C3). Then, (P,≤, {≤n}n∈ω) is not σ-short.
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Finiteness Property
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H. Mildenberger, The club principle and the distributivity

number, Journal of Symbolic Logic, Vol. 76 No.1,2011,

pp. 34-46

In this paper, Mildenberger defined the finiteness prop-

erty for Axiom A posets. It is defined as follows.
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Definition. An Axiom A poset (P,≤, {≤n}n∈ω) whose el-

ements are subsets of 2<ω or of ω<ω has the finiteness

property iff

1. p ≥ q implies p ⊇ q,

2. there is a function h : P× ω −→ ω such that for every

n, p, q,

p ≥n q iff p ≥ q and q ∩ h(p, n)h(p,n) = p ∩ h(p, n)h(p,n).

In the case of 2<ω, we can write 2h(p,n) instead of

h(p, n)h(p,n). We denote 2h(p,n) or h(p, n)h(p,n) by H
p
n.



Without loss of generality, we may assume that ele-

ments of P are trees. We say that P has the uniform

finiteness property if it has the finiteness property and

for every n ∈ ω, p, q ∈ P, p ≥n q implies h(p, n) = h(q, n).

For p ∈ P, s ∈ p is called the stem of p if

(i): for every t ∈ p, s ⊆ t or t ⊆ s, and

(ii): p is a branching point, i.e., s has at least two suc-

cessors in p.

We denote the stem of p as st(p). If σ is a finite subtree

of p, we denote it by σ ⋐ p.
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We say that t ∈ σ is a σ-branching point of p if there

exists k ∈ ω such that t⌢⟨k⟩ ∈ p and t⌢⟨k⟩ /∈ σ. We denote

the set of σ-branching points of p by σb.

If P = PL, then σb = σ\{t ∈ σ | t ⊊ st(p)}

Let p ≥ r and t ∈ σb. Then we say that t is a r-σ-

branching point of p if there exists s ∈ r such that t ⊊ s

and ∀k ∈ ω
[
t⌢⟨k⟩ ⊆ s ⇒ t⌢⟨k⟩ /∈ σ

]
. We donote the set of

r-σ-branching points of p by σb,r. For p ≥ r, r′ and σ ⋐ p,

we define r ≈σ r′ if and only if r∩σ = r′∩σ and σb,r = σb,r
′
.
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We say that P has enough elements if P satisfies the

following

1. I = 2<ω or ω<ω ∈ P,

2. for every r ∈ P, there exists r′ ∈ P such that r > r′ and

st(r) = st(r′),

3. for every p ∈ P,

p∗ = I \ {t ∈ I | t /∈ p,∃s ∈ (Hp
n\ p) [s ⊆ t or t ⊆ s]} ∈ P,

4. for every p ∈ P and s ∈ p,

p↾s = {t ∈ p | t ⊆ s or s ⊆ t} ∈ P,

5. for every p ∈ P and r ≤ p,

p|r = r ∪ {t ∈ p | t ⊈ st(r) and st(r) ⊈ t} ∈ P.
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Let σnp = {t ∈ ω<ω | ∃s ∈ p ∩H
p
n [t ⊆ s]}.

Lemma. Let (P,≤, {≤n}n∈ω) be an Axiom A poset with

uniform finiteness property which has enough elements.

Then for every n ∈ ω, p ∈ P and p ≥ r, there exists r′ < r

such that r ≈σnp r′.
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Theorem. Let (P,≤, {≤n}n∈ω) be an Axiom A poset with

uniform finiteness property which has enough elements.

Then we have

1. P satisfies (C1), (C2) and (C3).

2. If (P,≤, {≤n}n∈ω) satisfies the following strong amal-

gamation property, then P is not σ-short.

(AP ) : ∀n ∈ ω∀p ∈ P∀r ∈ P [p ≥ r ⇒

∃q ≤n p
[
q ≥ r ∧ ∀r′ ∈ P[q ≥ r′ ∧ r ≈σnp r′ ⇒ r ≥ r′

]]
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In the following, we assume that

(FS8): ∀p ∈ P∀n ∈ ω∀k ∈ I∗p,n

∃m ∈ ω∃j ∈ I1,m
[
astemn(p),n,k = a1,m,j

]
(FS9): ∀p, r, r′ ∈ P

[
p ≥ r, r′ ⇒ [∀n ∈ ω[r ∼p,n r′] ⇒ r = r′]

]
.

(FS10): ∀p ∈ P∃q ≤ p [q is uniform] ,

where q is uniform if for every n ∈ ω,

max{m | ∃k, j
[
astemn(p),n,k = a1,m,j

]
< min{m | ∃k, j

[
astemn+1(p),n+1,k = a1,m,j

]
.
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For every p ∈ P, we define a subtree p̃ of ω<ω by

p̃ = {τ ∈ ω<ω | ∀n ∈ dom(τ)[0 ≤ τ(n) ≤ f(1, n), p ↑ a1,n,τ(n)]}.

Let P̃ = {p̃ | p ∈ P}. We define a partial order ≤T on

P̃ such that p̃ ≤T q̃ if and only if p̃ is a subtree of q̃.

We denote I1,n by In. For n ∈ ω and j ∈ In , we define

τnj ∈ ω<ω by dom(τnj ) = {0, . . . , n} and τnj (k) = ℓ if and only

if a1,k,ℓ ≥ a1,n,j. Since {a1,k,ℓ}0≤ℓ≤f(1,k)is a partition of 1

and {a1,n,j}0≤j≤f(1,n)is a refinement of {a1,k,ℓ}0≤ℓ≤f(1,k) for

k ≤ n, τnj is well-defined. If astemn(p),n,k = a1,m,j, we de-

note τmj by τp,n,k.
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Lemma. p̃ is a subtree of ω<ω for every p ∈ P.

Lemma. For every τ ∈ p̃, there are extensions τ1, τ2 of τ

such that τ1 and τ2 are incompatible.

Lemma.

1. If p ̸= q, then p̃ ̸= q̃.

2. If p ≤ q, then p̃ is a subtree of q̃.

3. If p ⊥ q, then p̃ ⊥ q̃.

Lemma. If (P,≤) is a fusion poset with a frame system

which satisfies (F8) and (F9), then (P,≤) is isomorphic

to (P̃,≤T).
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Let P̃u = {p̃ | p is uniform}. Then P̃u is a dense subset of

P̃ by (F10).

Theorem. If ∀n∀p∀k[|{j | ap,n,k > ap,n+1,j}| = 2)], then

(P̃u,≤T) satisfies the finiteness property.

It is open that (P̃u,≤T) satisfies the finiteness property,

in general.

Remark. Since P̃L
∼= PL, P̃L satisfies the finiteness prop-

erty as in [2].
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Open Problems

1. Hechler forcing which adds a strictly increasing func-

tion from ω to ω is not σ-short. How about general

Hechler forcing?

2. Is a forcing product of a σ-closed poset and a CCC

poset with the density ≥ ω1 not σ-short?

3. Is Axiom A non-CCC poset not σ-short?
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