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Previous Study



In this talk, we assume that Boolean algebras are atom-
less, posets are nom-atomic and separative.

Definition

D C BTt is o-short if every strictly descending sequence
of length w in D does not have a nonzero lower bound
in B.

B is said to be o-short if it has a o-short dense subset.

B is said to be strongly o-short if it has a o-short A-closed
dense subset.



D is AN-closed if and only if t Ay e D for every z,y € D.

We note that B itself iIs not a o-short set, since B is

atomless.

oc-short posets are defined the same way as for BAS.



Examles of o-short Boolean algebras

1. For any set X, let Fr X be the free Boolean algebra
over X.

D=A{t+x1 -Fap-... - Fxp |nE€w,xr1,20,- - ,xn € X} —{0}

Clearly, D is a o-short A-closed dense subset of Fr X.
Hence, Fr X iIs strongly o-short.

Every regularly filtered Ba is also strongly o-short[TY].
0.0 Let (B,r) be a measure algebra.
D = {a € B| u(a) = 4 for some n € w}.

D is a o-short dense subset of B. Hence (B, ) is o-short.



Characterizations of o-short BAS:

Q1. Is it true that the following are equivalent?

(1) B is o-short.
(2) There exists a sequence {X,},co, Of subsets of B
which satisfies the following conditions:

(a) X, is a pairwise incomparable subset of B.

(b) If 2 € X,y € X,y and n < m, then y # z.

(c) X = |J X, is a dense subset of B.

necw

It holds that (2)=(1).



Partial answer for strongly o-short BAS

Theorem.([T]) The following are equivalent.
(1) B is strongly o-short.
(2) There exists a sequence {X,},co, Of subsets of B
which satisfies the following conditions:
(a) X, is a pairwise incomparable subset of B.
(b) If z € X,y € Xjn and n < m, then y # x.
(c) X = |J X, is a dense subset of B

necw

(d) {y € Xp|ly >z} is finite for every n € w and
T & X’n—l—l'



Q.2 Is it true that every o-short BAs are strongly o-
short?

NoO.

Theorem A(Brendle). Let B, be the algebra for adding
x Many random reals.

(1) By is not strongly o-short.

(2) Assume that the density of B, equals to k.
Then Bg IS strongly o-short.



Partial answer to Q.1 for Axiom A posets:

Theorem 1. Let P be o-short Axiom A poset. If P sat-
isfies the conditions (C1), (C2) and (C3) (to be defined
later), then there exists a sequence {X,},c, Of subsets
of P which satisfies the the following conditions:

(a) X, is a pairwise incomparable subset of B.

(b) If 2 € Xy, y € Xy, and n < m, then y # .

(c) X = |J X, is a dense subset of B.

necw

Actually, many Axiom A posets are not o-short.



A poset (P,<) satisfies Axiom A if there are partial or-

derings <, (n € w) such that

(Al): If p < ¢ then p < g;
(A2): If p <,,41 q, then p <, g;

(A3): If {pn}new is a fusion sequence; i.e., if p,11 <n pn
for every n € w, then there is ¢ such that q <,, p, for

all n € w;

(A4): If p €¢ P and W is a partition of p, then for
every n there is ¢ <, p such that ¢ is compatible with

at most countably many x € W.



We say that a poset (P, <) with partial orderings <;,, (n €
w) is a fusion poset If it satisfies (Al1),(A2),(A3). We

assume that partial orderings {<,}nc, are transitive.

Fir st, we consider the following condition (C1) for fu-

sion posets.

(C1):VYn € wVp € PIp* >, pVp' >4 plp* >n p']

For n ¢ w and p € P, we denote *xp in (C1) by stemn(p).



If a fusion poset P satisfies (C1), then the relation ~, on

P defined by p ~, ¢ << stemn(p) = stemn(q) is an equiva-
lence relation on P.

Using this equivalence relation, we consider conditions
(C2) and (C3) as follows.

(C2): Vnew[|[P/~n|<w]

(C3): Vnewvp,qePlp~nqg & p>qg=p>ndql



Examples

In the following examples, we consider a canonical enu-
meration of 2<% or w<¥. And, when we enumerate ele-

ments of a subset of those sets, we use this canonical

enumeration.

If ¢ appears in an enumeration after s, then we denote

it by s < t.

Let w<¥“t= {t € w<¥ | t is increasing}.



Sacks forcing: (Pg, <) is defined as follows.

P = {p|p is a perfect tree of 2<*} and p > ¢ iff p D gq.

p>nq < p>q and By(p) = Bn(q) where B, (p) is a set of
the (n 4+ 1)-st branching points of p.

For p € P¢ and n € w, put

stemp(p) = {t € 2<%} | ds € Bp(p) [t C s or s C t]}.

Ps satisfies (C1). It holds that p ~, ¢ Iff B,(p) = Bn(q).
So Pg satisfies (C2) and (C3).



Laver forcing: (P;,<) is defined as follows.

P, = {p| pis a tree of w<“ which has a stem s such that

Vt D s[S(t) ={k € w | t"k € p} is infinite]} and p > ¢ < p D

q-

For p € P;, let s£ = stem(p),s%,...,sh,, ... be an enumera-
p L 0 1

tion of {tep |t D stem(p)}.

p>nq Iff p > q and sf:sg for all :=0,...,n+ 1.



For p €c P; and n € w,

stemn(p) = {t €p|t C shtuU{sy,.. .,sﬁﬂ}u{t S w<w\si+1<t}.

P; satisfies (C1).
It holds that p ~, q iff s/ =s! for all i =0,...,n+4 1.

So P; satisfies (C2) and (C3).






Proof. Suppose that P is o-short.

Then, there exists a family {X,} which satisfy the con-

ditions as in Theorem 1.

We define a fusion sequence {p,}nc, inductively as fol-

lows.
Put po = p. Suppose that p, is already defined.

There exists g <, p, such that r £ ¢ forall » € X,, by (C4).
Let p,4+ 1 be such an element q. Then {p,}new is a fusion

sequence, so that there exists a fusion p, of {pn}ncw-



Since |J X, is a dense subset of P, there exists n € w
ncw

On the other hand, since p, < p,+1, we have ' £ p,
for all ' € X, by virtue of the definition of p,,;. This
contradicts that r € X,, and r < p,.



(C4) follows from (C2) and the following (C4a).

(C4a): If p € P and X iIs a pairwise incomparable subset
of P such that Vr,r’ € X |r ~g 7’|, then for every n there

is ¢ <, p such that r £ ¢q for all r € X.

We can show that many Axiom A posets satisfy (C4a)

using the strong type of amalgamations.



Example: Mathias forcing: (Pp;, <) is not o-short.
(Pys, <) is defined as follows.

Py ={(s,8) | s€ws¥,S Ciprw\max(s)},

(s,58) > (t, T) & t2Ds, T CS and range(t)\range(s) C S,

(s,8) 2n (¢, T) iff (s,5) =2 (¢,T),s =t and [S],,,, = [T]
where [S], is a set of the first £ elements of S,

p* = (s, [S]n—|—1 Ui{kEw ]|k > max([s]n—l—l)})v
(S,S) ~n (t,T) Iff s=1t and [S]n—I—l = [T]n-l—l

P,, satisfies (C1),(C2) and (C3).



Let p=(s,5),r=(,T) and p > r.

We denote (s,7' U [S],,41) by p|"r(or simply p|r) and call
it n-amalgamation of r into p.

Lemma. Suppose that p = (s,5),r=(¢,7) and p > r.
(1) P Zn p|n,r > T,
(2) If p|n7° > (t,T/) and TN [S]n—l-l =T'N [S]n—l—l , then

r >,

Proof. (1): Since S D [S],4+; and § D T, we have S DO
T U [S]p41 and [TU [S],41]n+1 = [S]h41-

(2): Suppose that p|"r > (¢t,77) and TN[S],,+1 = T'N[S];,+1-



Since TU[S],,+1 2T and TN[S],,+1 =T'N[S],,+1, we have
T DOT'. Hence r > r'.

Lemma. Let X be a pairwise incomparable subset of
P,; with same stem. Then for every (s,5) € Py, and
n € w, there exists S’ C S such that [S],1; = [9'],,+1 and
for every (¢,7) € X, (s,5") #? (t,T).



Proof. Let p = (s5,5) € Pyy , n € w and P([S],+1) =
{1, Tont1}. IFV(L,T) € X[(s,5) 2 (¢t,T7)], then take any
S’ such that S’ C S and [S],,11 = [S'],,-1. SO we assume
that there exists »r = (¢,7) € X such that r <p. We con-

struct a sequence {Qk}0§k§2”+1—|—1 inductively such that
dk+1 = (Sask—l—l) <n q = (S,Sk) for all k. Put So=S.
Suppose that we already have g;.

(1): If there exists (¢,7) € X such that (¢t,7) < (s, Sg)
and T'N [S],,41 = 7,- We pick such an element r = (¢,7')
and 77 C T such that 7/ N [S],41 = T' N [S],+1, and put

qr+1 = qi| (¢, T).



(2): Otherwise, put g;4+1 = gp.-
Finally we put q = Qon+141-

By virtue of the definition, we have ¢q <, p. We shall
show that ¢ # r for all r € X.

Suppose that ¢ > r = (¢t,T7) for some (¢t,7) € X .
Put - =TnN[S],+1. Then 7 =7, for some k.

Thus we have ¢, > q¢>r and T N [S],4+1 = 7%.

So, by the definition of the sequece {q;}, we have
defined g1 = ¢;|(¢t,7") where T/ C T* such that

T'0 [Slyge1 =T N [S]p41 =7 and (¢, T*) < (s, Sg)



for some (¢, 7*) € X.

Since q¢;|(t,T') > ¢ > (¢t,T) and T N [S],+1 = T' N [S]+1
(t,T7") > (¢,T) by above amalgamation lemma. Hence we
have (¢t,7*) > (t,7") > (¢t,7) and (¢t,7),(¢t,T*) € X. This
contradicts that X is a pairwise incomparable subset of
Pj.



In the same way, we can prove that other posets, eg.

Sacks forcing, Laver forcing,etc., satisfy (C4).

How to generalize this proof?

We need a definition of the strong type of amalgamation

p|r as above.

To define such amalgamations in general, we introduce

frame systems for fusion sets.



Frame Systems



Let (P, <, {<n}lnew) be a fusion poset and f be a map

from P x w to w.
I;,={kew]|0< k< f(stemn(p),n)}

We say that {a,,, €P|ncwpeP, 0k f(p,n)}is a
frame system for P if it satisfies the following conditions.



(FS1): Vn € w¥p,q € Plp ~n g = f(p,n) = f(q,n)]

(FS2): Vn € w¥p € P [{ap 5k o<k< f(pn)iS @ Partition of p
and {a, ,+1 jto<i<f(pn+t+1)iS @ refinement of
{apn kYosk<spm) ]

(FS3): Vn e wVp,q e P[p >nq

= Vk € [0, f(p, )] [appke =0 Ggnil]

(FS4): Vp,r € P [p >r = dn € widk € [0, f(p,n)] [ap,n,k >0 r”



(FS5): VnewVp,rePlp>r=3d¢<pplg>rA
Vvr' e Plg > 7" Ar ~q fr’/\rrvp,n_H r’ = ZT’H
(FS6): Vne wVp,re P[p>r
= Jr’ ¢ P[r > Ar ~on+1 T/H

(FS7): Vn € wVp,7 € P [a,p,n,k >0 T = Gpnk ~pntl fr]

where




Let ncw,p,r€¢P and p >r. Then by (FS5), we can find
g <npsuch that g >rAVr e Plg>r'Ar ~gr' Ar ~p.n+1 r’ =
r > r']l. We denote such an element g by p|"r(or simply

p|r) and calll it the n-amalgamation of r into p.



Examples:

Sacks forcing: Let f(p,n) =2"—1 and B,(p) = {sg,...,Son_1}

(where sg < s1--- < son_1).
Put Ay kb = s, ={t€p|t C s, or s Ct}.

Then {a,,, €Ps|n€w,pePg,0<k< f(p,n)} is a frame

system for Pg.



Mathias forcing:

(s,8) >n (t,T) iff (s,S) > (t, T),s =t and [S],4+1 = [T],+1-
Let f(p,n) =2" — 1, m = max([S],,+1) and

Kn = {7 € w<¥ | range(r) C [S]n} = {m0,...,Ton_1}
(where 9 <711+ < 7on_1).

For p = (s,S5), put a,,, = (s 7, S\[S]n)-

stemn(p) = (s, [S]lp4+1U{k€w |k >m)})



{a’stemn(p),n—l—l,j | J€ I*,n-l—l}
={(s",{kew|k>m)}) | 7 € Kn}U

{(s77 (m), {k €w | k>m)}) | 7 € Kn}

S0, {apni € Py | n€w,p€Py,0<k< f(p,n)}is a frame
system for P,,.



Laver forcing:

p>nq Iff p > g and Sf=sg for all : =0,...,n+4 1.

Let f(p,n) =n and K, = P({sq,.--,5n})-

For p € Pr, ap = (plsp)\{t € p| 35 > k[sj Ct]}.

If s is C-maximal node among K, then a, , ; = pls,.

stemn(p) ={t €p|t C sgtU{sy,.. .,sﬁﬂ}u{t C w<w|sz_|_1<t}.
Let £ = max{j | s; C s, ,,}. Then, if k # j < n, then

Cstemn(p),n+1,j — Lstemn(p),n,j-

—_ p
Astemn(p),n+1,k — astemn(p),n,k\{t € stemn(p) | Sn+1 Ct}.






Lemma(Amalgamation Lemma). Let (P, <, {<n}new) be
a fusion poset with a frame system which satisfies (C1),
(C2) and (C3). If n € w,p,r € P and r <g a,,, then we

have a,, , = T.

Proof. Suppose that n € w,p,r € P and r <g a,, . Let

qg = p|r. Then we have
(x) Vr'ePlg>r"Ar~gr' A7 ~pn41 r' = r > 7]

Since {a,, x}o<i<f(pn) IS @ Partiotion of p and r < a, , 1,

r 1S not compatible with q,, ; for all ;7 = k. BYy virtue



of (FS3), we have a,, ; > a,, ;. SO r is not compatible

with q, ,, ; for all j 7= k.
Since q = p|r > r, we have q,, | > 7.

We have a, , 1 >0 a,p,x DY (FS3) , so that we have r ~g
agnk- Hence by virtue of (CS3), a,, ) >0 r- Therefore
agnk ~gnt+17 DY (FS7). Since p >, q, we have stemn(p) =
stemn(q), so that a,,,  ~, ,4+; 7. SO we have r > a,, . by

(x). Thus a;, = O sy = O



Lemma. Let (P,< {<p}new) be a fusion poset with a
frame system which satisfies (C1), (C2) and (C3). Sup-
pose that W is a partition of P and p € P. Then there
exists ¢ <p p such that ¢ is compatible with at most

countably many »r € W.
Proof. It follows from the Amalgamation Lemma by

usual arguments.

Theorem. If (P,< {<p}lnew) is a fusion poset with a
frame system which satisfies (C1), (C2) and (C3), then

(P, <,{<n}necw) satisfies (A4).
Proof. By usual arguments.



Teorem. If (P, <, {<p}new) is a fusion poset with a frame
system which satisfies (C1), (C2) and (C3), then

(P, <,{<n}new) satisfies (C4).
Proof. Let {a,, ;} be a frame system for P, X be a pair-

wise incomparable subset of P such that vr,»’ € X[r ~g ']

and p € P.

We shall show that there exists ¢ <;,, p such that r ﬁ q
for all r € X.

If there exists no »r € X such that r < p, then we put

q = P-



So we assume that there exists r € X such that r < p.
Let ¢ = f(stemn(p),n+ 1) and P(I;,n—l—l) = {t1, .-y tort+1}-

We construct a sequence {qy}g,oe+14 1 INductively such
that

k41 <n q; for all k. Put ¢ = p.
Suppose that we already have q,.. In the following, we
denote {j [r 1 a’stemn(p),n—l—l,j} by C(r).

(1): If there exists r € X such that r < ¢, and C(r) = t,.
We pick such an element r and take 7 < r such that

r~pnt1 7 DYy (FS6). Then put gxy; = g7



(2): Othewise, put g;41 = gi-
Finally we put q = Qot+14q-

By virtue of the definition, we have q <, p. SO0 we shall
show that ¢ # r for all » € X. Suppose that ¢ > r for some
re X . Putt=C(r). Then t = t;, for some k. Thus
we have ¢, > q > r and C(r) = t,. So, by the definition
of the sequece {p;}, we have defined g, = q;|7 where
< 7 o~y pp1 rrand C(r*) =t for some r* € X. Then
C(r) =C(*) =t,=C(r). Since q,|f =qp1>2q9g>r ,72>7
by (FS5). Hence we have »* > 7> r and r*,r € X. This
contradicts that X is a pairwise incomparable subset of
P.






Finiteness Property



H. Mildenberger, The club principle and the distributivity
number, Journal of Symbolic Logic, Vol. 76 No.1,2011,

pp. 34-46

In this paper, Mildenberger defined the finiteness prop-

erty for Axiom A posets. It is defined as follows.



Definition. An Axiom A poset (P, <, {<,}new) Whose el-
ements are subsets of 2<% or of w<% has the finiteness
property iff

1. p > q implies p D g,

2. there is a function h : P x w — w such that for every

n,pP,d,

p >n q iff p > q and ¢ h(p,n)"P™) = pn w(p,n)HEm).

In the case of 2<%, we can write 2"(»") jnstead of

h(p,n)MP1)  We denote 2MP:n) or h(p,n)MP:n) py HE.



Without loss of generality, we may assume that ele-
ments of P are trees. We say that P has the uniform
finiteness property if it has the finiteness property and

for every n € w,p,q € P, p >, q implies h(p,n) = h(g,n).
For pe P, s € pis called the stem of p if
(i): for every tep, sCtortCs, and

(ii): p is a branching point, i.e., s has at least two suc-

CESSOors in p.

We denote the stem of p as st(p). If o is a finite subtree

of p, we denote it by o & p.



We say that ¢ € o0 iIs a o-branching point of p if there
exists £ € w such that ¢t~ (k) € p and t" (k) € 0. We denote

the set of o-branching points of p by .
If P=P;, then oc® =o\{t € o |t C st(p)}

Let p > r and t € ¢°. Then we say that ¢ is a r-o-
branching point of p if there exists s € » such that ¢t C s
and Vk € w|t"(k) C s = t"(k) ¢ o|]. We donote the set of
r-o-branching points of p by ¢%". For p > r,7' and o € p,

- - - !/
we define r ~, v’ if and only if rNo = r'No and ¢®" = o0,



We say that P has enough elements if P satisfies the
following

1. ] = 2<% or w<¥ € P,
2. for every r € P, there exists ' € P such that » > ' and
st(r) = st(r'),
3. for every p € P,
p*=I\{tel|t¢p3se (Hp\p) [sCtortCs]}eP,
4. for every pc P and s € p,
pls={tep|tCCsor sCt}eP,
5. for every pc P and r < p,
plr=rU{tep|tst(r) and st(r) £t} € P.



Let ag={t€w<w|ﬂs€pﬂﬂg[tgs]}.




Theorem. Let (P, < {<,}new) be an Axiom A poset with
uniform finiteness property which has enough elements.

Then we have
1. P satisfies (C1), (C2) and (C3).
2. If (P,<, {<n}lnew) satisfies the following strong amal-

gamation property, then P is not o-short.
(AP) :VnewvpePVrePlp>r=

Elq Snp[qzr/\vrlgP[QZT//\T%(;;}T/?TZr’”



In the following, we assume that

(FS8): Vp e PVn e wVk € I,
dm € wdy € I1 [astemn(p),n,k = al,m,j}
(FS9): Vp,r,7" € P [p >rr' = [Vnewlr ~pnrl = r= r’]] .
(FS10): Vp € Pdq < p|[q is uniform],
where q is uniform if for every n € w,
max{m | 3k, j {astemn(p),n,k = C’fl,m,j}

< min{m | 3k, j [astemn+1(p),n+l,k — Q1. m,j|"



For every p € P, we define a subtree p of w<% by

p={r € w<¥|¥n e dom(r)[0 < 7(n) < £(1,n),p T ay nrml}-

Let P = {p | p € P}. We define a partial order <; on

——

P such that p <4 ¢q if and only if p is a subtree of q.
We denote [; , by I,. For n € w and j € I, , we define
T € w<¥ by dom(7') = {0,...,n} and 77'(k) = £ if and only
if a1 ¢ > a1p,. Since {ay g rto<s<r(1x)IS @ Partition of 1

and {a1 , j}o<j<f(1,n)IS @ refinement of {ay ; r}o<y< (1 1) fOr

E<n, " is well-defined. If a

J Stemn(p)anak — a]"m’j’ WA de_

note 7'}”’ by 7,5 k-



Lemma. p is a subtree of w<“ for every p € P.

Lemma. For every 7 € p, there are extensions 71,7 of 7

such that 1 and = are incompatible.

Lemma.

1. If p = ¢q, then p = q.
2. If p <gq, then p is a subtree of g.

3.If p L q, then p L q.

Lemma. If (P, <) is a fusion poset with a frame system
which satisfies (F8) and (F9), then (P, <) is isomorphic
to (P, <rp).



Let P, = {p| p is uniform}. Then P, is a dense subset of
P by (F10).

Theorem. If VnVpVE[|{j | apni > apnt1t = 2)], then
(P., <7) satisfies the finiteness property.

It is open that (P,, <) satisfies the finiteness property,
iINn general.

Remark. Since P; = P;, P; satisfies the finiteness prop-
erty as in [2].



Open Problems

1. Hechler forcing which adds a strictly increasing func-

tion from w to w is not o -short. How about general

Hechler forcing?

2. Is a forcing product of a o-closed poset and a CCC

poset with the density > w; not o-short?

3. Is AXiom A non-CCC poset not o-short?
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